Computer Assisted Medical Interventions

Force control, collaborative manipulation and telemanipulation

Project: Robot-Assisted Procedures in Interventional Radiology

Bernard BAYLE

Joint course
University of Strasbourg, University of Houston, Telecom Paris Tech

2008–2009
Interventional Radiology (IR) procedures

A long list of minimally invasive image guided procedures

Balloon angioplasty, biliary drainage and stenting, central venous access, chemoembolization, cryoablation, infection and abscess drainage, needle biopsy, radiofrequency ablation, thrombolysis, urinary tract obstruction, vertebroplasty, ...
Interventional Radiology: access

Percutaneous access: focus on procedures with needles or probes

- Catheters: angioplasty, drainage, stenting, venous access, ...
- Needles: biopsies, injections, radiofrequency ablation, cryoablation, vertebroplasty, ...

![Image of catheters and needles]
Treatment schedule

1. Diagnosis and intervention planning
Interventional Radiology: manual procedure schedule

Treatment schedule

1. Diagnosis and intervention planning
2. Entry point registration
Interventional Radiology : manual procedure schedule

Treatment schedule

1. Diagnosis and intervention planning
2. Entry point registration
3. Patient preparation: sterilization, anaesthesia, etc.
Interventional Radiology: manual procedure schedule

<table>
<thead>
<tr>
<th></th>
<th>Treatment schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Diagnosis and intervention planning</td>
</tr>
<tr>
<td>2</td>
<td>Entry point registration</td>
</tr>
<tr>
<td>3</td>
<td>Patient preparation: sterilization, anaesthesia, etc.</td>
</tr>
<tr>
<td>4</td>
<td>Incision at the entry point</td>
</tr>
</tbody>
</table>
Interventional Radiology: manual procedure schedule

Treatment schedule

1. Diagnosis and intervention planning
2. Entry point registration
3. Patient preparation: sterilization, anaesthesia, etc.
4. Incision at the entry point
5. Insertion, treatment and needle removal
Imaging for IR

US

Availability ++
Price ++
Radiations ++
Imaging quality -
Variety of targets -
Imaging for IR

- **Availability**: +
- **Price**: +
- **Radiations**: - -
- **Imaging quality**: -
- **Variety of targets**: –
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>CT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>CT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Availability -</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Price - -</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Radiations - -</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Imaging quality ++</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Variety of targets ++</td>
</tr>
</tbody>
</table>
Imaging for IR

MRI

Availability - -
Price - -
Radiations ++
Imaging quality ++
Variety of targets ++

US

CT

MRI
Needle insertion

Haptics
- Basic requirement in the absence of real-time imaging
- Nonlinear, non homogeneous, patient variability
- Forces up to $6 - 10 \text{ N} \ (\text{max. } \simeq 20 \text{ N bones})$

![Graph showing force vs. time](image)
Why robots for IR?
Why robots for IR?

- US
- Motions in the image plane
- Realtime image guidance
Why robots for IR?
Why robots for IR?

CT MRI

X-rays protection
Registration
Planning
Limited realtime imaging
Necessary force feedback
Why robots for IR?
Why robots for IR?

- Registration/planning
- Realtime image guidance
- Tunnel access
- Operator
- Guidance modality?
Project: Robotic Specifications

Step 1
Definition on the medical task: general case, limitations, incompatibilities?

Step 2
Definition of the robotic task.

Step 3
Robotic specifications for this task.
Step 1 : Medical Specifications

- image acquisition
- registration needle/image
- incision and local insertion
- image acquisition
- orientation correction (needle bevel, bending)
- image acquisition
- needle insertion
- image acquisition (checking)
- ...
- medical treatment
- needle removal
Step 2: Robotic task

- image acquisition
- registration needle (or robot)/image
- entry point position and needle orientation computation
- insertion
- image acquisition (checking)
- ...
- medical treatment
- needle removal
Step 3: Robotic Specifications

- Automatic robot and/or tool registration in the imaging device
- Positioning device with 5 or 6 DOF (insertion decoupling?)
- Operator interaction to be chosen: automatic, collaborative manipulation, telemanipulation
- Force feedback
- Position measurement with/without model
Step 4 : Your Solution
Existing systems

Table mounted systems
Existing systems

Table mounted systems

Patient mounted systems
Telerobotic needle insertion system for CT

Features

- Teleoperation: staff protection
- Automatic registration tool/image
- Perceptual feedback (force, vision)
- Ergonomics

Issues

- Technology
- Planning, control, image registration
- Safety, sterilization
- Performances

<table>
<thead>
<tr>
<th>Features</th>
<th>Constraints</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety</td>
<td>Motion compensation</td>
<td>Patient-mounted robot.</td>
</tr>
<tr>
<td></td>
<td>Failsafe behavior</td>
<td>Quick removal of the robot from its base.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Joints locked in case of power failure. Release of the needle.</td>
</tr>
<tr>
<td>Environmental compatibility</td>
<td>CT-scan compatibility</td>
<td>No metal in the CT-plane to avoid image artifacts.</td>
</tr>
<tr>
<td></td>
<td>Sterilization</td>
<td>Protective bags, autoclavable distal parts, and one use parts.</td>
</tr>
<tr>
<td>Mechanical features</td>
<td>Dimensions</td>
<td>≈ 200 mm side cube (remaining space in the scanner ring for a stout patient).</td>
</tr>
<tr>
<td></td>
<td>Weight</td>
<td>< 3 kg for the patient comfort.</td>
</tr>
<tr>
<td></td>
<td>Mobility</td>
<td>5 DOF according to physicians requirements; optional DOF for the needle self rotation (trajectory bending).</td>
</tr>
<tr>
<td></td>
<td>Angular limits</td>
<td>-10 to 65 deg in the CT-plane, ± 25 deg in the orthogonal plane, to give access to various organs under various incidences.</td>
</tr>
<tr>
<td></td>
<td>Accuracy</td>
<td>5 mm max position error at the tip of a 200 mm long needle (≈ 10 mm for a manual procedure).</td>
</tr>
<tr>
<td></td>
<td>Forces</td>
<td>20 N max. force along the axis of the needle</td>
</tr>
</tbody>
</table>
CT-Bot insertion unit [IJRR special issue 2009]

Specifications

- Needle insertion and bevel orientation
- Needle manipulation and release
- Adapted the CT-Bot platform (small/stroke)
- X-rays compatible
- Force measurement
CT-Bot insertion unit [IJRR special issue 2009]

Driving mechanism

1. Casing (CT-Bot platform)
2. Transmission and actuator for translational displacement
3. Actuator for the grasp/release of the needle
4. Force sensor

- Flexible shaft
- Compression latch
- Connecting rod

Insertion mechanism

1. Casing
2. Carriage B
3. Grasping device

- Needle
- 130 mm
- 150 mm
CT-Bot insertion unit [IJRR special issue 2009]

Image-Guided Control of a Robot for Medical Ultrasound.

Needle insertion and radioactive seed implantation in human tissues : simulation and sensitivity analysis.

A Compact, Compliant Laparoscopic Endoscope Manipulator.

MR-Guided Percutaneous Interventions using a Robotic Assistance System : Initial Experiences in a Pig Model.

Detection and Correction of Geometric Distortion in 3D CT/MR Images.

Measuring in vivo animal soft tissue properties for haptic modeling in surgical simulation.

Stereotactic Frame and Computer Software for CT-directed Neurosurgical Localization.

L. G. Brown.
A survey of image registration techniques.

J. D. Brown, J. Rosen, Y. S. Kim, L. Chang, M. N. Sinanan et B. Hannaford.
In-vivo and in-situ compressive properties of porcine abdominal soft tissues.

Image-Guided Robotic Delivery System for Precise Placement of Therapeutic Agents.

J. Dai, Y. Zhu, H. Qu et Y. Hu.
An algorithm for stereotactic localization by computed tomography or magnetic resonance imaging.

S. P. DiMaio et S. E. Salcudean.
Needle Insertion Modelling and Simulation.

S. P. DiMaio.
Needle Motion Simulation and Planning for Applications in Soft Tissues.

S. P. DiMaio et S. E. Salcudean.
Needle insertion modelling and simulation.

S. P. DiMaio et S. E. Salcudean.
Needle Steering and Model-based Trajectory Planning.

Estimating 3-D Rigid body Transformations : a Comparison of Four Major Algorithms.
Robotically Assisted Prostate Biopsy and Therapy with Intra-Operative CT Guidance.

M. A. Fischler et R. C. Bolles.
Random Sample Consensus : A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography.

Y. C. Fung.
Biomechanics : mechanical properties of living tissues.

A. Gangi et J.-L. Dietemann.
Tomodensimétrie interventionnelle.

Interventional radiology with laser in bone and joint.

Percutaneous Vertebroplasty : Indications, Technique, and Results.

O. Gerovichev, P. Marayong et A. Okamura.

G. H. Golub et C. F. Van Loan.
Matrix computations.

D. Goryn et S. Hein.
On the Estimation of Rigid Body Rotation from Noisy Data.

E. Grimson.
Object recognition by computer: The role of geometric constraint.

An Automatic Registration Method for Frameless Stereotaxy, Image Guided Surgery, and Enhanced Reality Visualization.

P. Grunert, J. Maürer et W. Müller-Forell.
Accuracy of stereotactic coordinate transformation using a localisation frame and computed tomographic imaging.

R. I. Hartley.
In Defense of the Eight-Point Algorithm.

R. Hartley et A. Zisserman.
Multiple view geometry in computer vision.

C.-S. Ho.
Precision of digital vision systems.

J.S. Hong, T. Dohi, M. Hashizume, K. Konishi et N. Hata.
A Motion Adaptable Needle Placement Instrument based on Tumor specific Ultrasonic Image Segmentation.

J. Hong, T. Dohi, M. Hashizume, K. Konishi et N. Hata.
An Ultrasound-driven Needle-insertion Robot for Percutaneous Cholecystostomy.
IOP Publishing Ltd.

Robert Howe et Yoky Matsuoka.
Robotics for Surgery.
Annual Reviews.

Jiang Hsieh.
Computed tomography: principles, design, artifacts, and recent advances.

W. Khalil et J. Kleinfinger.
A New Geometric Notation for Open and Closed Loop Robots.

Y. S. Kwoh, J. Hou, E. Jonckheere et S. Hayati.
A Robot with improved Absolute Positioning Accuracy for CT guided Stereotactic Brain Surgery.

S. Lee, G. Fichtinger et G. S. Chirikjian.

L. Lemieux et R. Jagoe.
Effect of fiducial marker localization on stereotactic target coordinate calculation in CT slices and radiographs.

Development of An MRI-Compatible Needle Insertion Manipulator for Stereotactic Neurosurgery.

System for Robotically Assisted Percutaneous Procedures with Computer Tomography Guidance.

Analysis of forces during robotic needle insertion to human vertebra.

W. Maurel.

3D Modeling of the Human Upper Limb Including the Biomechanics of Joints, Muscles and Soft Tissues.

B. Maurin, C. Doignon, M. de Mathelin et A. Gangi.

Pose Reconstruction with an Uncalibrated Computed Tomography Imaging Device.

In Vivo Study of Forces During Needle Insertions.

B. Maurin, J. Gangloff, B. Bayle, M. de Mathelin, O. Piccin, P. Zanne, C. Doignon, L. Soler et A. Gangi.

B. Maurin, O. Piccin, B. Bayle, J. Gangloff et M. de Mathelin.

A Parallel 5 DOF Positioner for Semi-Spherical Workspaces.
B. Maurin, O. Piccin, B. Bayle, J. Gangloff, M. de Mathelin, L. Soler et A. Gangi.

A new robotic system for CT-guided percutaneous procedures with haptic feedback.

B. Maurin, C. Doignon, J. Gangloff, B. Bayle, M. de Mathelin, O. Piccin et A. Gangi.

CT-Bot : A stereotactic-Guided Robotic Assistant for Percutaneous Procedures of the Abdomen.

American Liver Foundation.
2001 annual report.

R. M. Murray, Z. Li et S. S. Sastry.
A mathematical introduction to robotic manipulation.

Visual Servoing for Automatic and Uncalibrated Needle Placement for Percutaneous Procedures.

F. C. Park.

Computational Aspects of the Product-of-Exponentials Formula for Robot Kinematics.

A comparison of similarity measures for use in 2-D-3-D medical image registration.

L. Quan et Z. Lan.

Linear N-Point Camera Pose Determination.
S. S. Rao.
Engineering optimization theory and practice.

Paul L. Rosin.
Robust Pose Estimation.

M. Shi, H. Liu et G. Tao.
A Stereo-Fluoroscopic Image-Guided Robotic Biopsy Scheme.

Bone-Mounted Miniature Robot for Surgical Procedures: Concept and Clinical Applications.

Stuart Silverman, Kemal Tuncali, Douglass Adams, Richard Nawfel, Kelly Zou et Philip Judy.
CT Fluoroscopy-guided Abdominal Interventions: Techniques, Results, and Radiation Exposure.

C. Simone et A. M. Okamura.
Modeling of Needle Insertion Forces for Robot-assisted Percutaneous Therapy.

M. Sonka et J.M. Fitzpatrick editors.
Handbook of medical imaging.

A Novel Mechanical Transmission Applied to Percutaneous Renal Access.

A Modular Surgical Robotic System for Image Guided Percutaneous Procedures.
A Single Image Registration Method for CT Guided Interventions.

E. Taillant, J.C. Avila-Vilchis, C. Allegrini, I. Bricault et P. Cinquin.

S. Umeyama.
Least-Squares Estimation of Transformation Parameters Between Two Point Patterns.

A New Robot Architecture for Tele-Echography.

An automatic technique for localizing externally attached markers in MR and CT volume images of the head.

J. Yanof, J. Haaga et al.

On geometric distortions in CT images.